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We construct a statistical model for the term-structure of implied volatilities
of currency options based on daily historical data for 13 currency pairs over
a 19-month period. We examine the joint evolution of 1 month, 2 month, 3
month, 6 month and 1 year at-the-money (50 �) options in all the currency
pairs. We show that there exist three uncorrelated state variables (principal

components) which account for the parallel movement, slope oscillation, and
curvature of the term structure and which explain, on average, the movements
of the term-structure of volatility to more than 95% in all cases. We test and
construct an exponential ARCH, or E-ARCH, model for each state variable.
One of the applications of this model is to produce con�dence bands for the
term structure of volatility.
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1 Introduction

With the rapid innovation and growth of the derivative securities, the manage-

ment of volatility risk in its many forms has become an important topic for

researchers and practitioners. This is due to the sensitivity of derivatives to

market volatility and the need to manage this risk accurately and at low cost.

There have been several approaches to this end, each with its own advantages

and pitfalls. One consists in using \implied tree" models (Dupire, 1994; Ru-

binstein, 1994; Derman and Kani, 1994); a more traditional approach consists

managing the Vegas corresponding to di�erent maturities. Other models use

the notion of stochastic volatility. Hull and White (1987), for example, treat

the spot volatility as an exogenous random source, while Engle and collabora-

tors (Engle and Noh, 1994; Engle and Mezrich, 1995; Engle and Rosenberg,
1995) analyze the volatility of the underlying process using heteroskedastic
auto-regressive models (the Autoregressive Conditionally Heteroskedastic, or
ARCH-GARCH family). Other approaches involve the use of con�dence bands

for future volatility movements (Avellaneda and Par�as, 1996).
In this article, we contribute to the theoretical understanding of the volatility

of option prices by studying empirically the dynamics of the term-structure

of implied volatilities of currency options. We use a Principal Component
Analysis (PCA) (Judge, 1988) combined with ARCH techniques to derive a

statistical model for the evolution of the term structure of volatility. Thus, the
present statistical analysis is not on the volatility of the underlying asset, as in
traditional work (see Engle, 1994, 1995), but rather on the implied volatilities.
The latter provide a \dimensionless" representation of the currency options
market.

Using historical data on the implied volatility of options on 13 currency
pairs for the period Jan. 1, 1995 to July 30, 1996, we develop a three-factor
term-structure model which appears to be applicable to all the studied cur-

rency pairs. A similar methodology was used by other authors in the study
of term structure of interest-rates (Litterman and Scheinkman, 1991). There
are, however, important structural di�erences between interest rates and im-

plied volatilities. The main di�erence is that the term-structure of volatility

is a stochastic process which is far from equilibrium. As an illustration of
this, Figure 1 shows an \equilibrium" AR model �tted using least squares

and maximum likelihood techniques compared against real data. One clearly
observes more structure in the real data than in the equilibrium model, and

unlike the latter, the real implied volatility data exhibits a trend. A formal

test for non-stationarity or \trend" of time series is the unit root test (Enders,
1995). We apply this test to the term-structure of volatility, and the results
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Figure 1: Simulated paths (one realization) of AR Model vs. Real Term Volatility
for USD/JPY. A) 30 day implied Volatility , B) 60 day implied Volatility . The
simulated paths do not re
ect the structure of the real data.

fail to reject the null hypothesis of non-stationarity in all cases. On the other
hand, we will show that in similar vein to interest rates, most of the variance
on the term structure of volatility can be explained in terms of three factors:
level movement (� 90%), slope (� 5%) and curvature (� 1%).

The implied volatility processes exhibit strong heteroskedasticity, ie., the
volatility of volatility is not constant. Therefore, we propose a class of 3-factor
exponential ARCH, or E-ARCH, models to describe their dynamics. Based
on the analysis of sections 2 and 3, the example in Figure 2 suggests that this
model predicts the real movement of implied volatilities much better than na��ve

AR models.
As an application of this E-ARCH model, we present a method for calcu-

lating conditional con�dence bands for the motion of the volatility curve. The

method is illustrated with the aforementioned dataset. One possible application
of such con�dence bands could be for \statistical arbitrage", or alternatively,

in the context of the Uncertain Volatility Model (Avellaneda and Par�as, 1996),
where option hedges are computed based on a proposed range for the future

spot volatility.
This article is organized as follows. Section 2 discusses the three-factor

model obtained by the Principal Component Analysis method applied to log-

di�erences of the vector of implied volatilities. Section 3 discusses the three-

factor E-ARCH model. Section 4 describes the construction of upper and lower

con�dence bands, for given time horizon, initial conditions and con�dence level.
The conclusions are presented in Section 5.
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Figure 2: Simulated paths of E-ARCHModel (one realization) vs. Real Term Volatil-
ity for USD/JPY. A) 1 month, B) 2 month, C) 3 month, D) 6 month, E) 12 months.
Notice the similar structure of paths.
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2 Risk Factors A�ecting the Volatility Term-

Structure of FX options

2.1 Volatility Risk

By de�nition, Vega measures the sensitivity of an option's value to a parallel

shift in the volatility term structure. In reality, however, the term volatility

does not move in parallel fashion: it is well-known, for instance, that short-

term volatility tends to be more volatile than long-term volatility.

A one-factor model of the term-structure e�ectively \decomposes" the over-
all volatility risk into (i) a systematic risk modeled by the one-factor model and

(ii) an unsystematic risk, which is not accounted for explicitly, represented by
the spreads between the realized term volatilities and the reference volatility
predicted by the model. Consequently, if we used a statistical one-factor model
for parallel shifts of the term structure of volatility, we would not be able to
explain the relative changes or correlations between the prices of options with

di�erent expirations. Such an approach is too simplistic to be of practical use.
Empirical observation shows that each term volatility has a separate move-

ment. This is why it is common practice in foreign-exchange markets to use
\term Vegas" (i.e., 1-month Vega, 6-month Vega, etc.) for hedging the option
book. However, this approach requires using large numbers of options and

leads to the problem of hedging options with maturities which are not readily
quoted in the over-the-counter market, such as a 75-day or a 47-day option.

The research conducted in this paper shows that the volatility term-structure
can be decomposed essentially into three \principal components," or major
sources of risk. This is due to the fact that the �ve maturities quoted on a

day-to-day basis (1, 2, 3, 6 and 12 months) are highly correlated. This suggests
the use of a multi-factor (three-factor) model to explain the 
uctuations of the

curve. This type of model o�ers the advantage of giving a better framework

for hedging the book by hedging the exposure to each component rather than
looking at individual expiration dates. It o�ers a solution to the aforementioned
problems associated with \intensive" Vega-hedging, since fewer options will be

involved if we hedge according to the principal components. We expect, in

general, to hedge more than 95% of the risk in this way, in terms of a measure
that will be made precise below.

The advantage of using a multi-factor model is that the underlying factors
are not merely the quoted volatilities for standard maturities, ie., we take into
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account existing statistical correlations between volatilities. From the point of

view of hedging, we are only concerned with the sensitivity of the portfolio to

each factor.

2.2 The Three-Factor Model

The Principal Component Analysis (PCA) approach for analyzing a time-series

consists in studying the covariance matrix of successive shocks. If we view

the term-structure of volatility as a 5-dimensional vector, (�(1); �(2); : : : ; �(5)),

where the �(i)'s represent the 1, 2, 3, 6 and 12 month volatility, respectively,

then we should analyze a 5�5 symmetric matrix of squares and cross-products

of volatility changes. The approach that we take in this paper is to analyze the

covariance of the di�erences of the logarithm of the implied volatilitiesA = aij,
which are de�ned as

aij =
1

T � 1

T�1X
t=1

( log �(i)(t+ 1) � log �(i)(t)) ( log �(j)(t+ 1) � log �(j)(t))

where 1 � i; j � 5 and t ranges over the number of days observed.2 Other

possible candidates for analyzing the principal components could be successive
di�erences of the volatilities (instead of the logarithms), the logarithm of the
data or simply the data itself (in the latter two cases, the sample mean of the
term-structure enters the calculation as well). The reason for working with
di�erenced data is the following: in conducting a unit root test on the implied
volatility movements of FX rates for 13 currency pairs, we could not reject

in any of the cases a unit root null-hypothesis. Hence, we concluded that the
implied volatility curve does not behave like a stationary processes. Since, by
convention, the PCA analysis leads to factors that have mean zero and constant
variance, it is reasonable to select variables that are statistically stationary. The
di�erenced data, by inspection or the unit-root test, is stationary. Moreover,

to exclude the possibility of having negative volatilities, we chose to work with

the di�erenced logarithms rather than the di�erences of the volatilities.
Let us denote by Y

(j)
t , the j-th di�erenced logarithm of implied volatility

at time t and by ~v1; ~v2; :::; ~v5 the �ve normalized eigenvectors of the sample

covariance matrix of fY (j)
t g5

j=1. We can de�ne the coordinates of the vectors

Y
(1)
t ; :::Y

(5)
t in the orthonormal frame de�ned by the eigenvectors, viz.,

V
(i)
t =

X
j

vijY
(j)
t

2The data used were daily closing prices posted electronically by brokers.
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V1 V2 V3 V4 V5

1M 0.0636 0.3257 -0.0004 -0.6406 0.6925
2M -0.5004 -0.6825 -0.0394 0.1533 0.5087
3M 0.7505 -0.1794 0.2818 0.4107 0.3956
6M -0.0457 0.3897 -0.7288 0.4900 0.2737
12M -0.4246 0.4941 0.6229 0.3967 0.1740

Eig-value 0.0083 0.0104 0.0045 0.0310 0.9459

Table 1: Eigenvectors and normalized Eigenvalues for USD/JPY

or
Y

(j)
t =

X
i

vijV
(i)
t :

In this formulation, the random variables V (i) are statistically uncorrelated

linear combinations of the Y (j). This suggests the following ansatz for the
term-structure of volatility

�
(j)
t = �

(j)

t�1exp(
X
i

vijV
(i)

t�1); (1)

where the statistics of the processes V
(i)
t i = 1; : : : ; 5 will be determined in the

next section.
Numerical values for the components of f~vig5i=1 and their corresponding

normalized eigenvalues are shown in Table 1 for USD/JPY,3 using the period

from January 1, 1995 to July 30, 1996 with daily observations. The eigenvalue
normalization is made such that their total sums are equal to 1. Each normal-
ized eigenvalue represents the importance of the corresponding component for
explaining the variance of the curve. An important consequence of the PCA
analysis is that, in all 13 cases, the variability of the term-structure of volatility

is explained to more than 95% by just 3 components or eigenvectors.

Figure 3 exhibit the factor sensitivities for USD/JPY, USD/DEM and
CAD/USD. The plotted curves represent the percentage change in term-vol
for a one standard deviation shock in the the corresponding factor. Only the

three factors with the largest eigenvalues are shown. We used cubic splines to

generate a smooth curve interpolating between the �ve standard maturities.
Table 1 in Appendix shows that the �rst (largest eigenvalue) factor accounts

for about 90% of the variance on average. We observe in Figure 3 that the
percentage changes caused by this �rst factor are positive and relatively 
at

3Table 1 in the Appendix shows results for all the 13 currency pairs.
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Figure 3: Factor Sensitivities for A) USD/JPY, B) USD/DEM and C) USD/CAD.
Solid line is Factor 1, dot-dash line is Factor 2, and dotted line is Factor 3.

across all maturities. Thus, this �rst factor corresponds approximately to a

parallel movement of the term-structure of volatility . Note however that the

sensitivity curve of the �rst factor is downward-sloping for most currencies,
which is consistent with the fact that the longer term volatility is less volatile

than shorter term volatility.
The second factor, which explains about 5% of the variance on average,

corresponds to the variation of the slope of the term-structure. It \lowers" the
short-term volatilities and \raises" the long-term volatilities.

The third factor explains about 1% of the variability on average. We can

view it as \twist component" of the term-structure curve: it tends to lower the
term volatility for short and long maturities and raise it in the middle.
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Total
Term Variance
Vol Explained(%) Factor 1(%) Factor 2(%) Factor 3(%)
1M 100.0 97.0 2.7 0.2
2M 99.2 97.0 0.3 1.9
3M 96.8 93.3 3.3 0.2
6M 97.1 86.1 9.0 1.9
1YR 91.8 72.9 12.4 6.4

Average 98.7 94.6 3.1 1.0

Table 2: Relative Importance of Factors

Table 2 exhibits the relative importance of the three factors of USD/JPY4 in
explaining the variation of each of the �ve volatilities corresponding to standard
maturities.

We see that, on average, for all the currencies, the three factors account
for more than 95% of the total variance. Although they explain the shorter
term volatility better than the longer term volatility, the longer term volatility
is much less volatile.

Based on this analysis and equation (1), we shall consider in the sequel the

three-factor model for the volatility term-structure

�
(j)
t = �

(j)

t�1exp(
3X
1

vijV
(i)

t�1) ; (2)

where V
(i)
t ; i = 1; 2; 3; represent the factors with the largest eigenvalues.

3 Three-factor Exponential ARCH model

A cursory inspection of the real volatility processes of JPY in Figure 2

shows that volatility of these processes is not constant across time. There

are periods of unusually large volatility followed by periods of relatively low
volatility of the term-structure. This clearly points to the inadequacy of na��ve

models in which the volatility of volatility is constant. Experiments with ho-
moskedastic autoregressive (AR) statistics strongly support this, since the path


uctuations that result tend to be much more homogeneous across time than

4Table 2 in Appendix shows the results for all 13 currency pairs.
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indicated by the data. More formal statistical testing (Lagrange Multiplier Test

of Engle, 1984) points to a strong heteroskedastic e�ect. In order to construct

an appropriate ARCH model, we �rst calculated the ACF (Autocorrelation

Coe�cient Function) of the di�erenced data, which shows no autocorrelation

e�ect to any order. In fact, the ACF's resemble those of simulated white noise.

Once we have an appropriate AR model, (in this case, no AR coe�cients),

the TR-square statistic of a regression of residuals for each V (i) is used, and

it suggests that an ARCH(2) model is appropriate for most currency pairs.

Therefore, we adopt the following model for each of the three factors:

V
(i)
t

= a(i) + �
(i)
t

�
(i)
t

� N(0; h
(i)
t
) (3)

h
(i)
t+1 � Et�

(i)2
t+1 = �

(i)
0 + �

(i)
1 (�

(i)
t�1)

2 + �
(i)
2 (�

(i)
2 )2 ;

where i = 1; 2; 3. Et is expectation conditional on time t. The parameters
a; �0; �1 and �2 are then determined by the Maximum Likelihood method for

each of the three factors. These values are shown in the Appendix.
Figure 2 shows the model vs. the real data for USD/JPY. We see that the

model selects the correct range of motions of the term-structure and captures
some of the �ner details of the series.

We believe that the present Exponential ARCH(2) model is appropriate

for simulating term-volatility movement because it captures two important
features of the real processes: the unit root e�ect, or non-stationarity, and the
heteroskedasticity of the process. These hypotheses are strongly supported by
statistical testing.

One should not think of the 3-factor Exponential ARCH(2) model as a

\local volatility model" in the sense of Hull and White. Thus, it cannot be
used directly in a derivatives pricing model to simulate the dynamics of the
spot volatility. Nevertheless, it gives a realistic version of how the prices of
options with di�erent maturities are correlated in the currency markets, and

thus provides useful information for hedging a book with a spectrum of options.

To feed the market information directly into a derivatives pricing model,

we would need to model the local volatility variations. To this e�ect, we could

use the 3-factor E-ARCH to construct dynamics for the \forward" volatility
processes, i.e., the 1 month-2 month, 2 month-3 month volatilities, etc. Another

approach, which we explore below, is to determine \con�dence bands" for the
term-structure of volatilities, which could be used as inputs in the Uncertain

Volatility Model (Avellaneda and Par�as, 1996). The next section describes a
methodology for computing con�dence bands.
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4 Application: Con�dence Bands

Consider the model of equation (3) for V (1); V (2) and V (3). Let us make a change

of variables expressing volatility term-structure in its original representation.

Using the notations of the last section, we have,

� log �
(j)
t

=
3X

i=1

vija
(i) +

3X
i=1

vij�
(i)
t

= A(j) +
3X

i=1

vij�
(i)
t
; (j = 1; : : : ; 5)

Our goal is, for given con�dence level, to �nd the upper and lower bounds for

log �(i)
s
, i = 1; � � � ; 5, s 2 [0; t]. To this end we

1. approximate the processes by their continuous time version.

2. assume that the drift terms A(i)'s are small compared with di�usion co-
e�cient

P3
i=1 v

2
ij
.

Both approximations are reasonable. Typically A(i) is of order 10�4, while

h�log �ti =
X
i

v2
ij

is of order 10�2 (h�i is the quadratic variation ).
In principle, one could use Monte-Carlo to �nd the joint distribution of

log �
(i)

min
and log �(i)

max
. This involves �nding a two-dimensional histogram for

each standard maturity, but this is time-consuming. Instead, we used Monte-

Carlo simulation to �nd the distribution of the quadratic variation process of
log �

(i)
t , ie.,

P (hlog �ti 2 dT )

which involves calculating only a one-dimensional histogram. Then, we used

a time-change to transform, for each i, log �
(i)
t to a Brownian Motion with

drift.5 We then used a formula for the Brownian �rst-passage time to compute

5Although in this case the drift is not constant, due to assumption 2 that the drift is small

compared to typical T, this conditional distribution won't change much if we spread the drift

out evenly during time 0! T . When T is small, ie., the conditional motion is basically drift,

the band is big enough that the probability won't be a�ected by the spreading out. Moreover,

when T is small, constant drift is fairly a good approximation anyway.
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the probability of the time-changed log �t exits a band. This is a well-known

formula for the distribution of Brownian passage time with drift, often used to

generate closed-form solutions for double-barrier options (Karatzas and Shreve,

1991).

Let us be more speci�c. First, we �x some notations. Wt is a Brownian

Motion starting from x, with drift �. T0 and Tb are the exiting time of Wt from

0 and b, respectively. If P (�)[T0 ^ Tb � t] is the probability that the process

f�s+Wsgts=0 exits the band [0; b], then

P (�)[T0 ^ Tb � t] =
1X
n=0

e�+[1�N(A+) + e�2�+N(A�)]

�
1X
n=0

e��[1� N(B+) + e�2�� N(B�)]

+
1X
n=0

e��[1� N(A+ +
bp
t
) + e�2��+2b�N(A� +

bp
t
)]

�
1X
n=0

e�++b�[1� N(B+ � bp
t
) + e�2�+�2b�N(B� � bp

t
)]

where

N(x) =
1p
2�

Z
x

�1

e�
z
2

2 dz

and

�� = �(2nb� x)�

A� = ��
p
t� 2nb+ xp

t

B� = ��
p
t� 2nb � xp

t
:

The terms in the series decay like exp(��n2), with � = 2b2

t
. Evaluation of the

sum of the �rst two or three terms is su�cient in practice.
This calculation gives the conditional probability

P (log �s 2 [b1; b2]; s 2 [0; t]jhlog�ti = T )

where again h�i denotes the quardratic variation. Therefore,

P (log �s 2 [b1; b2]; s 2 [0; t])

=
Z
1

0
P (log �s 2 [b1; b2]jhlog �ti = T ) � P (hlog �ti 2 dT )

11



For a given con�dence level, say 95%, set

P (log �s 2 [b1; b2]; s 2 [0; t]) = 0:95:

There are many pairs of [b1; b2] which satisfy the above equation. We simply

choose the initial position x in such a way that the the probabilities for exiting

the band on both sides are equal, namely

Px[�b1 � �b2 ] = Px[�b1 � �b2]

where �bi is the exit time of the process log �s from boundary bi. The subscript

x denotes the initial condition. In practice, however, we approximate it by the

following equation:

x = E f y j (Py[Tb1 � Tb2jhlog �ti] = Py[Tb1 � Tb2jhlog �ti]) g
Table 3 shows the 95%-con�dence bands for 11 currency pairs6 over di�er-

ent time periods T .7 We �nd that the bands for the term-structure of volatility
form a \cone": short maturities have wider con�dence intervals than long matu-
rities for any given time-window t. The bands were calculating using a speci�c
initial condition: we used the �rst three days in the dataset as the initial condi-

tion for the ARCH(2) processes. Note that this is a conditional term volatility
band, i.e., di�erent initial conditions give rise to di�erent bands, which depend
on the positions of the �ve term volatilities over the past three days.

5 Conclusion

The analysis of the implied volatilities of currency options for 13 currency
pairs shows that the movements of the term-structure are explained to more
than 95% with a three-factor model. These factors are derived by a Principal
Component Analysis of the sample covariance matrix of the changes in the

log-di�erences of the implied volatilites of the �rst �ve standard maturities.
A heteroskedastic model for the evolution of the three factors driving the

volatility curve was derived. We found that an ARCH(2) model was consistent
with the data for each currency pair.

Finally, this model was used to calculate con�dence bands for the term-
structure over di�erent periods of time. In all cases, these bands are \cone-

like", in the sense that the con�dence intervals become narrower as the option's

expiration date increases.

6CAD and DEMESP are more suitable for jump-di�usion processes, here we exclude

these two cases.
7The Table 3 shows time periods over 15, 30, 60, 90 and 120 days.
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T 1M 2M 3M 6M 12M

15 � 9.9781 9.4833 9.0959 8.9046 13.5821
� 6.0989 6.7484 7.0336 7.3649 4.9966

30 � 10.9664 10.1199 9.5547 9.2323 9.2005
� 5.5504 6.3236 6.6938 7.1008 7.4829

USD-AUD 60 � 12.5266 11.0881 10.2405 9.7172 9.5792
� 4.8612 5.7710 6.2416 6.7414 7.1829

90 � 13.8944 11.9040 10.8097 10.1157 9.8876
� 4.3845 5.3750 5.9094 6.4709 6.9547

120 � 15.1229 12.6170 11.2958 10.4492 10.1433
� 4.0299 5.0709 5.6516 6.2597 6.7754

15 � 18.6214 16.6631 16.0034 14.4959 13.8153
� 5.3403 6.4607 7.3952 8.6314 9.7241

30 � 24.7961 20.7054 19.1007 16.3118 14.9680
� 4.0007 5.1903 6.1854 7.6594 8.9649

USD-CHF 60 � 34.2818 26.4360 23.3269 18.6939 16.4289
� 2.8726 4.0410 5.0389 6.6597 8.1488

90 � 46.4759 33.2947 28.1467 21.1912 17.8945
� 2.1064 3.1936 4.1588 5.8571 7.4653

120 � 56.1850 38.4087 31.6422 22.9463 18.8931
� 1.7328 2.7561 3.6851 5.3941 7.0571

15 � 15.5809 15.4993 15.3015 14.4975 13.6618
� 4.3031 4.5380 4.7065 5.0866 5.4010

30 � 19.0959 18.8207 18.4282 17.1042 15.8199
� 3.4960 3.7194 3.8893 4.2926 4.6481

USD-DEM 60 � 28.3647 27.4421 26.4692 23.5806 21.0344
� 2.3459 2.5418 2.6979 3.1034 3.4865

90 � 36.6813 35.0758 33.4948 29.0573 25.3024
� 1.7990 1.9704 2.1122 2.4972 2.8791

120 � 50.8531 47.9054 45.1775 37.9016 32.0228
� 1.2953 1.4400 1.5630 1.9111 2.2713

Table 3: Implied Vol 95% Band. T is the time period for which di�erent bands
are valid. overline� and underline� are the upper bound and lower bound

respectively.
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15 � 6.0702 5.6669 5.8365 5.0656 5.1074
� 2.3736 2.6795 2.7385 3.1564 3.4521

30 � 7.1700 6.4581 6.7021 5.5293 5.4984
� 2.0066 2.3488 2.3830 2.8902 3.2053

DEM-CHF 60 � 9.1467 7.8282 8.1736 6.2656 6.1022
� 1.5682 1.9334 1.9509 2.5479 2.8859

90 � 11.0733 9.1044 9.5463 6.9102 6.6207
� 1.2915 1.6588 1.6678 2.3079 2.6578

120 � 12.9096 10.2714 10.8350 7.4873 7.0821
� 1.1045 1.4672 1.4672 2.1278 2.4827

15 � 4.8144 4.6203 4.7438 5.0590 5.1818
� 0.8281 1.0439 1.3136 1.7752 1.9728

30 � 6.6910 6.0860 6.0197 6.1571 6.2193
� 0.5944 0.7907 1.0331 1.4563 1.6415

DEM-FRF 60 � 10.6467 8.9752 8.4334 8.1206 8.0486
� 0.3719 0.5338 0.7345 1.1008 1.2652

90 � 14.9690 11.9164 10.7845 9.9504 9.7342
� 0.2633 0.4003 0.5721 0.8957 1.0435

120 � 20.8403 15.7589 13.7252 12.1167 11.6729
� 0.1883 0.3013 0.4477 0.7334 0.8679

15 � 14.5603 13.0722 12.0480 11.0815 10.4499
� 4.3889 4.8904 5.3072 5.7698 6.1192

30 � 18.1806 15.6822 14.0276 12.5067 11.5391
� 3.5107 4.0730 4.5550 5.1082 5.5376

DEM-ITL 60 � 24.9891 20.3243 17.4252 14.8850 13.3318
� 2.5483 3.1376 3.6618 4.2855 4.7862

90 � 32.0328 24.8852 20.6415 17.0511 14.9160
� 1.9834 2.5584 3.0870 3.7354 4.2718

120 � 39.1518 29.3086 23.6716 19.0319 16.3451
� 1.6191 2.1688 2.6882 3.3417 3.8929

15 � 11.0145 11.1917 11.4694 11.7281 11.2358
� 5.1023 6.1512 7.0585 7.8577 8.8987

30 � 12.7203 12.5137 12.5610 12.6586 11.7450
� 4.4149 5.4984 6.4425 7.2799 8.5118

DEM-JPY 60 � 15.6032 14.6631 14.2883 14.1115 12.5038
� 3.5942 4.6875 5.6591 6.5298 7.9931

90 � 18.1937 16.5169 15.7446 15.3323 13.1124
� 3.0781 4.1570 5.1315 6.0095 7.6201

120 � 20.8027 18.3292 17.1362 16.4517 13.6622
� 2.6883 3.7420 4.7109 5.6002 7.3114

Table 3: (continued)Implied Vol 95% Band

14



15 � 15.5483 14.4455 13.6527 12.8797 12.2370
� 4.6258 5.7136 6.5904 7.7481 8.8269

30 � 19.2527 17.0004 15.5144 14.0962 12.9726
� 3.7254 4.8451 5.7888 7.0693 8.3187

USD-FRF 60 � 26.9794 21.9913 19.0005 16.2384 14.2082
� 2.6430 3.7293 4.7084 6.1184 7.5806

90 � 34.2630 26.4156 21.9281 17.9700 15.1665
� 2.0693 3.0918 4.0642 5.5128 7.0883

120 � 41.9166 30.8467 24.7406 19.5792 16.0226
� 1.6825 2.6370 3.5894 5.0456 6.6975

15 � 12.2662 11.7865 11.4443 11.2836 11.4482
� 4.6945 5.6929 6.5996 8.1575 9.0802

30 � 14.7347 13.5512 12.7100 12.0034 11.9589
� 3.8993 4.9435 5.9327 7.6605 8.6863

USD-GBP 60 � 18.9455 16.4122 14.6803 13.0765 12.7119
� 3.0191 4.0686 5.1197 7.0178 8.1602

90 � 22.9590 19.0154 16.3953 13.9706 13.3411
� 2.4801 3.5004 4.5693 6.5556 7.7644

120 � 27.1407 21.5973 18.0421 14.7839 13.8886
� 2.0888 3.0721 4.1389 6.1827 7.4478

15 � 8.8646 8.5452 8.0783 7.5907 7.5108
� 3.4126 3.8027 4.3093 4.7422 5.1174

30 � 10.6893 10.0164 9.1372 8.3295 8.1053
� 2.8302 3.2445 3.8100 4.3213 4.7417

GBP-DEM 60 � 13.8544 12.4780 10.8378 9.4682 8.9995
� 2.1837 2.6051 3.2124 3.8009 4.2698

90 � 17.0060 14.8488 12.4031 10.4760 9.7741
� 1.7792 2.1897 2.8072 3.4348 3.9306

120 � 20.1387 17.1396 13.8636 11.3890 10.4642
� 1.5025 1.8975 2.5117 3.1589 3.6708

15 � 14.5472 13.4890 13.0636 12.8907 12.7556
� 5.3224 6.4092 7.3488 8.5502 9.6576

30 � 17.5806 15.5250 14.5580 13.9374 13.4512
� 4.4036 5.5670 6.5926 7.9064 9.1568

USD-JPY 60 � 22.7916 18.8156 16.8861 15.5093 14.4728
� 3.3960 4.5907 5.6805 7.1021 8.5081

90 � 28.1021 21.9741 19.0323 16.9034 15.3508
� 2.7536 3.9286 5.0372 6.5136 8.0193

120 � 33.5397 25.0451 21.0559 18.1734 16.1270
� 2.3066 3.4449 4.5506 6.0559 7.6312

Table 3: (continued)Implied Vol 95% Band
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A Appendix: Tables

List of tables:

1. Table for Eigenvectors and Normalized Eigenvalues.

2. Table for Relative Importance of Factors.

3. Table for ARCH(2) parameters.
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Table 1: Eigenvectors and Normalized Eigenvalues

V1 V2 V3 V4 V5
1M 0.1142 0.4142 0.0460 -0.5382 0.7236

2M -0.4633 -0.7075 -0.1437 0.0342 0.5128

3M 0.7490 -0.2424 0.1727 0.4704 0.3594
6M -0.1624 0.4320 -0.6588 0.5485 0.2282

12M -0.4300 0.2871 0.7165 0.4324 0.1796

USD-AUD 0.0188 0.0321 0.0083 0.0769 0.8640

1M -0.0694 0.3003 -0.6623 -0.4984 0.4669

2M 0.4755 -0.7004 0.1263 -0.2163 0.4696

3M -0.7708 -0.1139 0.4121 -0.0714 0.4670
6M 0.4172 0.6321 0.4795 0.0918 0.4337

12M -0.0301 -0.0817 -0.3817 0.8314 0.3943
USD-CAD 0.0017 0.0037 0.0137 0.0299 0.9510

1M 0.0759 -0.0207 0.3928 -0.6209 0.6738
2M -0.5324 0.1068 -0.6602 0.0715 0.5139

3M 0.7051 -0.3374 -0.2571 0.3867 0.4164

6M 0.0458 0.7409 0.3507 0.5007 0.2745
12M -0.4600 -0.5705 0.4698 0.4574 0.1819

USD-CHF 0.0105 0.0061 0.0181 0.0389 0.9264

1M -0.0475 -0.0420 0.3554 -0.6285 0.6889
2M -0.2964 0.0972 -0.7846 0.1394 0.5174

3M 0.7962 -0.1924 0.0149 0.4055 0.4055
6M -0.2304 0.6707 0.4284 0.4973 0.2576

12M -0.4722 -0.7085 0.2728 0.4169 0.1639

USD-DEM 0.0092 0.0067 0.0164 0.0286 0.9392

1M 0.4129 -0.1051 0.0190 -0.6588 0.6198

2M -0.8486 -0.1054 -0.0935 -0.0395 0.5084
3M 0.1731 0.7438 -0.0096 0.4367 0.4754

6M 0.1311 -0.4650 0.6982 0.4448 0.2853
12M 0.2495 -0.4565 -0.7095 0.4194 0.2239

DEM-CHF 0.0289 0.0511 0.0118 0.0718 0.8365

1M -0.1898 0.0173 -0.4174 -0.6681 0.5858

2M 0.6912 0.0364 0.5089 -0.0687 0.5072

3M -0.6426 -0.3050 0.4953 0.2457 0.4340

6M -0.1057 0.7812 -0.1920 0.4722 0.3445
12M 0.2492 -0.5432 -0.5335 0.5153 0.3044

DEM-FRF 0.0147 0.0092 0.0231 0.0663 0.8867
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1M 0.1694 -0.0293 -0.4132 -0.6475 0.6169
2M -0.6962 0.1148 0.4819 0.0002 0.5196
3M 0.6906 0.1368 0.5042 0.2598 0.4273
6M -0.0535 -0.7700 -0.2453 0.4878 0.3258
12M -0.0830 0.6118 -0.5317 0.5248 0.2465

DEM-ITL 0.0138 0.0091 0.0201 0.0651 0.8918

1M 0.2524 0.0513 -0.5393 -0.4509 0.6630
2M -0.6978 0.3048 0.3807 -0.0423 0.5230
3M 0.2860 -0.6892 0.5105 0.0863 0.4185
6M -0.1191 -0.0939 -0.4304 0.8454 0.2775
12M 0.5945 0.6486 0.3440 0.2696 0.1867

DEM-JPY 0.0139 0.0105 0.0255 0.0580 0.8921

1M 0.7092 -0.0628 -0.3035 0.0210 0.6328
2M 0.0301 -0.0089 0.4937 0.8515 0.1739
3M 0.0172 -0.0205 0.7702 -0.5221 0.3654
6M -0.4656 0.7045 -0.1877 0.0305 0.5007
12M -0.5282 -0.7065 -0.1888 0.0329 0.4302

USD-DEMESP 0.0102 0.0006 0.1170 0.3123 0.5600

1M 0.0276 -0.0619 0.4520 -0.5713 0.6817
2M -0.4377 0.0285 -0.7365 0.0075 0.5149
3M 0.8053 0.1097 -0.1839 0.3708 0.4100
6M -0.3771 0.4926 0.4367 0.5938 0.2680
12M -0.1298 -0.8606 0.1696 0.4284 0.1737

USD-FRF 0.0089 0.0100 0.0168 0.0331 0.9312

1M -0.6982 0.0842 -0.0409 0.0291 0.7092
2M 0.6039 0.5603 -0.1952 -0.1075 0.5212
3M 0.3022 -0.4638 0.7241 -0.1018 0.3986
6M 0.2249 -0.4441 -0.3961 0.7392 0.2210
12M 0.0766 -0.5163 -0.5282 -0.6563 0.1332

USD-GBP 0.0548 0.0495 0.0310 0.0182 0.8465

1M 0.1346 0.5494 0.0637 -0.5264 0.6316
2M -0.5690 -0.6063 0.0036 -0.1297 0.5402
3M 0.7627 -0.4038 0.0520 0.2803 0.4171
6M -0.1523 0.2882 -0.7277 0.5268 0.2943
12M -0.2306 0.2906 0.6809 0.5916 0.2207

GBP-DEM 0.0166 0.0232 0.0095 0.0535 0.8973

1M 0.0636 0.3257 -0.0004 -0.6406 0.6925
2M -0.5004 -0.6825 -0.0394 0.1533 0.5087
3M 0.7505 -0.1794 0.2818 0.4107 0.3956
6M -0.0457 0.3897 -0.7288 0.4900 0.2737
12M -0.4246 0.4941 0.6229 0.3967 0.1740

USD-JPY 0.0083 0.0104 0.0045 0.0310 0.9459

Table 1: (continued) Eigenvectors and Normalized Eigenvalues
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Table 2: Relative Importance of Factors

Total

Term Variance

Volatility Explained(%) Factor 1(%) Factor 2(%) Factor 3(%)

1M 100.0 94.2 4.6 1.1

2M 98.3 91.8 0.0 6.5
3M 92.4 79.0 12.0 1.3

6M 94.8 57.5 29.6 7.7
1YR 85.3 53.0 27.3 5.0

AUD Average 97.3 86.4 7.7 3.2

1M 99.8 93.8 3.4 2.7
2M 99.0 98.2 0.7 0.1
3M 99.5 98.3 0.1 1.1

6M 99.0 97.2 0.1 1.7
1YR 100.0 86.7 12.1 1.2

CAD Average 99.5 95.1 3.0 1.4

1M 100.0 95.9 3.4 0.6

2M 98.8 95.6 0.1 3.1

3M 96.6 92.6 3.4 0.7
6M 96.1 82.0 11.4 2.6
1YR 91.1 65.3 17.3 8.5

CHF Average 98.3 92.6 3.9 1.8

1M 100.0 97.1 2.5 0.5
2M 99.7 95.6 0.2 3.8
3M 96.3 93.5 2.8 0.0

6M 95.4 82.1 9.3 4.0

1YR 85.4 68.5 13.5 3.3
DEM Average 98.4 93.9 2.9 1.6

1M 98.6 89.8 8.7 0.2

2M 91.2 90.9 0.1 0.2
3M 99.6 81.5 5.9 12.2

6M 93.7 68.4 14.3 11.1

1YR 89.4 57.5 17.3 14.6
DEM-CHF Average 95.9 83.7 7.2 5.1
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Total
Term Variance

Volatility Explained(%) Factor 1(%) Factor 2(%) Factor 3(%)
1M 99.8 89.9 8.7 1.2
2M 97.1 94.5 0.1 2.5
3M 96.2 91.0 2.2 3.1
6M 95.4 83.1 11.7 0.7
1YR 96.7 74.7 16.0 6.0

DEM-FRF Average 97.6 88.7 6.6 2.3

1M 99.9 91.6 7.4 0.9
2M 97.3 95.5 0.0 1.9
3M 96.2 90.9 2.5 2.9
6M 95.4 81.0 13.3 1.0
1YR 95.7 66.6 22.1 7.0

DEM-ITL Average 97.7 89.2 6.5 2.0

1M 99.8 95.1 2.9 1.8
2M 97.0 95.5 0.0 1.4
3M 96.4 92.2 0.2 3.9
6M 99.8 59.6 36.0 4.1
1YR 80.4 65.2 8.8 6.3

DEM-JPY Average 97.6 89.2 5.8 2.5

1M 97.9 93.3 0.1 4.5
2M 100.0 6.2 83.3 10.5
3M 100.0 32.6 37.1 30.3
6M 98.3 95.3 0.2 2.8
1YR 97.2 93.1 0.3 3.8

DEMESP Average 98.9 56.0 31.2 11.7

1M 100.0 96.8 2.4 0.8
2M 99.3 95.8 0.0 3.5
3M 96.5 93.4 2.7 0.3
6M 95.7 78.3 13.7 3.8
1YR 82.1 66.6 14.4 1.1

FRF Average 98.1 93.1 3.3 1.7

Table 2: (continued) Relative Importance of Factors (continued)

21



Total
Term Variance

Volatility Explained(%) Factor 1(%) Factor 2(%) Factor 3(%)
1M 100.0 94.0 0.1 5.9
2M 99.5 86.2 5.8 7.5
3M 90.1 80.7 6.4 3.0
6M 78.5 60.2 14.2 4.0
1YR 63.4 33.4 29.3 0.7

GBP Average 95.1 84.7 5.0 5.5

1M 99.9 94.2 3.9 1.8
2M 98.1 94.7 0.3 3.1
3M 94.4 89.8 2.4 2.2
6M 94.6 77.8 14.9 1.9
1YR 92.4 62.7 26.9 2.8

GBP-DEM Average 97.4 89.7 5.3 2.3

1M 100.0 97.0 2.7 0.2
2M 99.2 97.0 0.3 1.9
3M 96.8 93.3 3.3 0.2
6M 97.1 86.1 9.0 1.9
1YR 91.8 72.9 12.4 6.4

JPY Average 98.7 94.6 3.1 1.0

Table 2: (continued) Relative Importance of Factors (continued)
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Table 3: Estmated ARCH(2) Parameters and Errors

�0 �1 �2 a

0.0000 0.2013 0.0018 -0.0001

(0.0000) (0.0028) (0.0008) (0.0000)
0.0001 0.2587 0.0011 -0.0010

(0.0000) (0.0021) (0.0002) (0.0000)

0.0011 0.1473 0.0006 -0.0002

AUD (0.0000) (0.0018) (0.0003) (0.0000)

0.0000 0.3556 0.1798 -0.0002

(0.0000) (0.0044) (0.0035) (0.0000)
0.0002 0.0609 0.0547 -0.0005
(0.0000) (0.0025) (0.0027) (0.0000)
0.0020 0.7520 0.0727 -0.0055

CHF (0.0000) (0.0090) (0.0026) (0.0001)

0.0000 0.5276 0.1496 -0.0004

(0.0000) (0.0054) (0.0026) (0.0000)
0.0001 0.0315 0.0973 -0.0004
(0.0000) (0.0024) (0.0027) (0.0000)

0.0023 0.8640 0.0515 -0.0074
DEM (0.0000) (0.0103) (0.0020) (0.0001)

0.0002 0.4792 0.0007 0.0002
(0.0000) (0.0051) (0.0011) (0.0000)

0.0003 0.2658 0.0005 0.0005
(0.0000) (0.0042) (0.0025) (0.0000)

0.0037 0.3706 0.0007 -0.0035

DEM-CHF (0.0000) (0.0051) (0.0015) (0.0002)

0.0004 0.1937 0.0005 -0.0003

(0.0000) (0.0050) (0.0000) (0.0000)
0.0013 0.0852 0.0005 -0.0003

(0.0000) (0.0028) (0.0018) (0.0001)

0.0121 0.4344 0.0504 -0.0069

DEM-FRF (0.0001) (0.0064) (0.0027) (0.0003)
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�0 �1 �2 a

0.0001 0.4247 0.0009 0.0005
(0.0000) (0.0045) (0.0025) (0.0000)

0.0005 0.2409 0.0006 -0.0003

(0.0000) (0.0031) (0.0033) (0.0001)

0.0067 0.2269 0.1043 -0.0031

DEM-ITL (0.0000) (0.0036) (0.0034) (0.0002)

0.0001 0.1336 0.0000 -0.0001

(0.0000) (0.0030) (0.0054) (0.0000)
0.0002 0.1584 0.0009 0.0004

(0.0000) (0.0031) (0.0009) (0.0000)
0.0029 0.1724 0.0431 -0.0016

DEM-JPY (0.0000) (0.0035) (0.0022) (0.0001)

0.0001 0.4138 0.1652 -0.0003

(0.0000) (0.0041) (0.0034) (0.0000)
0.0002 0.0138 0.0508 -0.0006

(0.0000) (0.0027) (0.0022) (0.0000)
0.0036 0.1601 0.4218 -0.0068

FRF (0.0000) (0.0040) (0.0085) (0.0002)

0.0002 0.2189 0.0009 -0.0003
(0.0000) (0.0036) (0.0018) (0.0000)

0.0002 0.2121 0.0009 0.0008
(0.0000) (0.0029) (0.0020) (0.0000)
0.0035 0.2532 0.0535 -0.0057

GBP (0.0000) (0.0042) (0.0021) (0.0002)

0.0001 0.1965 0.2524 -0.0002
(0.0000) (0.0032) (0.0036) (0.0000)
0.0003 0.1020 0.0000 -0.0002

(0.0000) (0.0043) (0.0016) (0.0000)

0.0061 0.0636 0.0007 0.0001
GBP-DEM (0.0000) (0.0018) (0.0017) (0.0002)

0.0001 0.2095 0.0006 0.0001

(0.0000) (0.0031) (0.0026) (0.0000)
0.0001 0.0314 0.0973 -0.0004

(0.0000) (0.0033) (0.0036) (0.0000)

0.0036 0.2808 0.1029 -0.0007
JPY (0.0000) (0.0042) (0.0023) (0.0002)

Table 3: (continued) Estmated ARCH(2) Parameters and Errors
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